Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 17(1): e1009092, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33481774

RESUMO

In order to adjust to changing environmental conditions, bacteria use nucleotide second messengers to transduce external signals and translate them into a specific cellular response. Cyclic di-adenosine monophosphate (c-di-AMP) is the only known essential nucleotide second messenger. In addition to the well-established role of this second messenger in the control of potassium homeostasis, we observed that glutamate is as toxic as potassium for a c-di-AMP-free strain of the Gram-positive model bacterium Bacillus subtilis. In this work, we isolated suppressor mutants that allow growth of a c-di-AMP-free strain under these toxic conditions. Characterization of glutamate resistant suppressors revealed that they contain pairs of mutations, in most cases affecting glutamate and potassium homeostasis. Among these mutations, several independent mutations affected a novel glutamate transporter, AimA (Amino acid importer A, formerly YbeC). This protein is the major transporter for glutamate and serine in B. subtilis. Unexpectedly, some of the isolated suppressor mutants could suppress glutamate toxicity by a combination of mutations that affect phospholipid biosynthesis and a specific gain-of-function mutation of a mechanosensitive channel of small conductance (YfkC) resulting in the acquisition of a device for glutamate export. Cultivation of the c-di-AMP-free strain on complex medium was an even greater challenge because the amounts of potassium, glutamate, and other osmolytes are substantially higher than in minimal medium. Suppressor mutants viable on complex medium could only be isolated under anaerobic conditions if one of the two c-di-AMP receptor proteins, DarA or DarB, was absent. Also on complex medium, potassium and osmolyte toxicity are the major bottlenecks for the growth of B. subtilis in the absence of c-di-AMP. Our results indicate that the essentiality of c-di-AMP in B. subtilis is caused by the global impact of the second messenger nucleotide on different aspects of cellular physiology.


Assuntos
Bacillus subtilis/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Ácido Glutâmico/metabolismo , Potássio/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Fosfatos de Dinucleosídeos/genética , Regulação Bacteriana da Expressão Gênica/genética , Ácido Glutâmico/genética , Homeostase/genética , Transporte de Íons/genética , Mutação/genética , Sistemas do Segundo Mensageiro/genética
2.
Biochim Biophys Acta Mol Cell Res ; 1868(2): 118914, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33245978

RESUMO

The widely conserved twin-arginine translocases (Tat) allow the transport of fully folded cofactor-containing proteins across biological membranes. In doing so, these translocases serve different biological functions ranging from energy conversion to cell division. In the Gram-positive soil bacterium Bacillus subtilis, the Tat machinery is essential for effective growth in media lacking iron or NaCl. It was previously shown that this phenomenon relates to the Tat-dependent export of the heme-containing peroxidase EfeB, which converts Fe2+ to Fe3+ at the expense of hydrogen peroxide. However, the reasons why the majority of tat mutant bacteria perish upon dilution in NaCl-deprived medium and how, after several hours, a sub-population adapts to this condition was unknown. Here we show that, upon growth in the absence of NaCl, the bacteria face two major problems, namely severe oxidative stress at the membrane and starvation leading to death. The tat mutant cells can overcome these challenges if they are fed with arginine, which implies that severe arginine depletion is a major cause of death and resumed arginine synthesis permits their survival. Altogether, our findings show that the Tat system of B. subtilis is needed to preclude severe oxidative stress and starvation upon sudden drops in the environmental Na+ concentration as caused by flooding or rain.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Estresse Oxidativo/genética , Cloreto de Sódio/metabolismo , Sistema de Translocação de Argininas Geminadas/metabolismo , Arginina/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/genética , Viabilidade Microbiana/genética , Proteínas Mutantes/metabolismo , Organismos Geneticamente Modificados , Transporte Proteico/genética , Sistema de Translocação de Argininas Geminadas/genética
3.
Front Microbiol ; 11: 622, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373088

RESUMO

Under hyperosmotic conditions, bacteria accumulate compatible solutes through synthesis or import. Bacillus subtilis imports a large set of osmostress protectants via five osmotically controlled transport systems (OpuA to OpuE). Biosynthesis of the particularly effective osmoprotectant glycine betaine requires the exogenous supply of choline. While OpuB is rather specific for choline, OpuC imports a broad spectrum of compatible solutes, including choline and glycine betaine. One previously mapped antisense RNA of B. subtilis, S1290, exhibits strong and transient expression in response to a suddenly imposed salt stress. It covers the coding region of the opuB operon and is expressed from a strictly SigB-dependent promoter. By inactivation of this promoter and analysis of opuB and opuC transcript levels, we discovered a time-delayed osmotic induction of opuB that crucially depends on the S1290 antisense RNA and on the degree of the imposed osmotic stress. Time-delayed osmotic induction of opuB is apparently caused by transcriptional interference of RNA-polymerase complexes driving synthesis of the converging opuB and S1290 mRNAs. When our data are viewed in an ecophysiological framework, it appears that during the early adjustment phase of B. subtilis to acute osmotic stress, the cell prefers to initially rely on the transport activity of the promiscuous OpuC system and only subsequently fully induces opuB. Our data also reveal an integration of osmostress-specific adjustment systems with the SigB-controlled general stress response at a deeper level than previously appreciated.

4.
Environ Microbiol ; 22(8): 3266-3286, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32419322

RESUMO

The Gram-positive bacterium Bacillus subtilis is frequently exposed to hyperosmotic conditions. In addition to the induction of genes involved in the accumulation of compatible solutes, high salinity exerts widespread effects on B. subtilis physiology, including changes in cell wall metabolism, induction of an iron limitation response, reduced motility and suppression of sporulation. We performed a combined whole-transcriptome and proteome analysis of B. subtilis 168 cells continuously cultivated at low or high (1.2 M NaCl) salinity. Our study revealed significant changes in the expression of more than one-fourth of the protein-coding genes and of numerous non-coding RNAs. New aspects in understanding the impact of high salinity on B. subtilis include a sustained low-level induction of the SigB-dependent general stress response and strong repression of biofilm formation under high-salinity conditions. The accumulation of compatible solutes such as glycine betaine aids the cells to cope with water stress by maintaining physiologically adequate levels of turgor and also affects multiple cellular processes through interactions with cellular components. Therefore, we additionally analysed the global effects of glycine betaine on the transcriptome and proteome of B. subtilis and revealed that it influences gene expression not only under high-salinity, but also under standard growth conditions.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Betaína/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Proteoma , Salinidade , Cloreto de Sódio/farmacologia
5.
Environ Microbiol ; 22(6): 2312-2328, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32249531

RESUMO

Upon competence-inducing nutrient-limited conditions, only part of the Bacillus subtilis population becomes competent. Here, we separated the two subpopulations by fluorescence-assisted cell sorting (FACS). Using RNA-seq, we confirmed the previously described ComK regulon. We also found for the first time significantly downregulated genes in the competent subpopulation. The downregulated genes are not under direct control by ComK but have higher levels of corresponding antisense RNAs in the competent subpopulation. During competence, cell division and replication are halted. By investigating the proteome during competence, we found higher levels of the regulators of cell division, MinD and Noc. The exonucleases SbcC and SbcD were also primarily regulated at the post-transcriptional level. In the competent subpopulation, yhfW was newly identified as being highly upregulated. Its absence reduces the expression of comG, and has a modest, but statistically significant effect on the expression of comK. Although expression of yhfW is higher in the competent subpopulation, no ComK-binding site is present in its promoter region. Mutants of yhfW have a small but significant defect in transformation. Metabolomic analyses revealed significant reductions in tricarboxylic acid (TCA) cycle metabolites and several amino acids in a ΔyhfW mutant. RNA-seq analysis of ΔyhfW revealed higher expression of the NAD synthesis genes nadA, nadB and nadC.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , RNA não Traduzido , Bacillus subtilis/metabolismo , Regulação para Baixo , Regulon , Regulação para Cima
6.
mBio ; 9(5)2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30228237

RESUMO

Staphylococcus aureus causes various diseases ranging from skin and soft tissue infections to life-threatening infections. Adaptation to the different host niches is controlled by a complex network of transcriptional regulators. Global profiling of condition-dependent transcription revealed adaptation of S. aureus HG001 at the levels of transcription initiation and termination. In particular, deletion of the gene encoding the Rho transcription termination factor triggered a remarkable overall increase in antisense transcription and gene expression changes attributable to indirect regulatory effects. The goal of the present study was a detailed comparative analysis of S. aureus HG001 and its isogenic rho deletion mutant. Proteome analysis revealed significant differences in cellular and extracellular protein profiles, most notably increased amounts of the proteins belonging to the SaeR regulon in the Rho-deficient strain. The SaeRS two-component system acts as a major regulator of virulence gene expression in staphylococci. Higher levels of SaeRS-dependent virulence factors such as adhesins, toxins, and immune evasion proteins in the rho mutant resulted in higher virulence in a murine bacteremia model, which was alleviated in a rho complemented strain. Inhibition of Rho activity by bicyclomycin, a specific inhibitor of Rho activity, also induced the expression of SaeRS-dependent genes, at both the mRNA and protein levels, to the same extent as observed in the rho mutant. Taken together, these findings indicate that activation of the Sae system in the absence of Rho is directly linked to Rho's transcription termination activity and establish a new link between antibiotic action and virulence gene expression in S. aureusIMPORTANCE The major human pathogen Staphylococcus aureus is a widespread commensal bacterium but also the most common cause of nosocomial infections. It adapts to the different host niches through a complex gene regulatory network. We show here that the Rho transcription termination factor, which represses pervasive antisense transcription in various bacteria, including S. aureus, plays a role in controlling SaeRS-dependent virulence gene expression. A Rho-deficient strain produces larger amounts of secreted virulence factors in vitro and shows increased virulence in mice. We also show that treatment of S. aureus with the antibiotic bicyclomycin, which inhibits Rho activity and is effective against Gram-negative bacteria, induces the same changes in the proteome as observed in the Rho-deficient strain. Our results reveal for the first time a link between transcription termination and virulence regulation in S. aureus, which implies a novel mechanism by which an antibiotic can modulate the expression of virulence factors.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Quinases/metabolismo , Fator Rho/metabolismo , Staphylococcus aureus/genética , Fatores de Transcrição/metabolismo , Terminação da Transcrição Genética , Fatores de Virulência/biossíntese , Animais , Antibacterianos/metabolismo , Bacteriemia/microbiologia , Bacteriemia/patologia , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Deleção de Genes , Perfilação da Expressão Gênica , Teste de Complementação Genética , Proteínas Quinases/genética , Proteoma/análise , Regulon , Fator Rho/genética , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Fatores de Transcrição/genética , Virulência
7.
mSphere ; 3(3)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29769380

RESUMO

Streptococcus pneumoniae two-component regulatory systems (TCS) enable adaptation and ensure its maintenance in host environments. This study deciphers the impact of TCS08 on pneumococcal gene expression and its role in metabolic and pathophysiological processes. Transcriptome analysis and real-time PCR demonstrated a regulatory effect of TCS08 on genes involved mainly in environmental information processing, intermediary metabolism, and colonization by S. pneumoniae D39 and TIGR4. Striking examples are genes for fatty acid biosynthesis, genes of the arginine deiminase system, and the psa operon encoding the manganese ABC transport system. In silico analysis confirmed that TCS08 is homologous to Staphylococcus aureus SaeRS, and a SaeR-like binding motif is displayed in the promoter region of pavB, the upstream gene of the tcs08 operon encoding a surface-exposed adhesin. Indeed, PavB is regulated by TCS08 as confirmed by immunoblotting and surface abundance assays. Similarly, pilus-1 of TIGR4 is regulated by TCS08. Finally, in vivo infections using the acute pneumonia and sepsis models showed a strain-dependent effect. Loss of function of HK08 or TCS08 attenuated D39 virulence in lung infections. The RR08 deficiency attenuated TIGR4 in pneumonia, while there was no effect on sepsis. In contrast, lack of HK08 procured a highly virulent TIGR4 phenotype in both pneumonia and sepsis infections. Taken together, these data indicate the importance of TCS08 in pneumococcal fitness to adapt to the milieu of the respiratory tract during colonization.IMPORTANCEStreptococcus pneumoniae interplays with its environment by using 13 two-component regulatory systems and one orphan response regulator. These systems are involved in the sensing of environmental signals, thereby modulating pneumococcal pathophysiology. This study aimed to understand the functional role of genes subject to control by the TCS08. The identified genes play a role in transport of compounds such as sugars or amino acids. In addition, the intermediary metabolism and colonization factors are modulated by TCS08. Thus, TCS08 regulates genes involved in maintaining pneumococcal physiology, transport capacity, and adhesive factors to enable optimal colonization, which represents a prerequisite for invasive pneumococcal disease.


Assuntos
Adaptação Fisiológica , Regulação Bacteriana da Expressão Gênica , Metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/fisiologia , Bacteriemia/microbiologia , Proteínas de Bactérias/genética , Deleção de Genes , Perfilação da Expressão Gênica , Genes Reguladores , Pneumonia Pneumocócica/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Virulência
8.
Metab Eng ; 45: 171-179, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29242163

RESUMO

Bacteria are able to prioritize preferred carbon sources from complex mixtures. This is achieved by the regulatory phenomenon of carbon catabolite repression. To allow the simultaneous utilization of multiple carbon sources and to prevent the time-consuming adaptation to each individual nutrient in biotechnological applications, mutants lacking carbon catabolite repression can be used. However, such mutants often exhibit pleiotropic growth defects. We have isolated and characterized mutations that overcome the growth defect of Bacillus subtilis ccpA mutants lacking the major regulator of catabolite repression, in particular their glutamate auxotrophy. Here we show, that distinct mutations affecting the essential DNA topoisomerase I (TopA) cause glutamate prototrophy of the ccpA mutant. These suppressing variants of the TopA enzyme exhibit increased activity resulting in enhanced relaxation of the DNA. Reduced DNA supercoiling results in enhanced expression of the gltAB operon encoding the biosynthetic glutamate synthase. This is achieved by a significant re-organization of the global transcription network accompanied by re-routing of metabolism, which results in inactivation of the glutamate dehydrogenase. Our results provide a link between DNA topology, the global transcriptional network, and glutamate metabolism and suggest that specific topA mutants may be well suited for biotechnological purposes.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Repressão Catabólica/genética , Proteína Receptora de AMP Cíclico/deficiência , DNA Bacteriano , Mutação , Transcrição Gênica/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo
9.
J BUON ; 23(7): 53-59, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30722112

RESUMO

PURPOSE: The aim of this study was to evaluate the anti-angiogenic properties of soy isoflavones using two breast cancer cell lines, by measuring the concentration of 30 cytokines involved in angiogenesis using a multiplex glass slide ELISA-based array. METHODS: Estrogen-dependent MCF-7 cells and estrogen-independent MDA-MB-231 cells were exposed to genistein (Gen), daidzein (Dai) and a soy seed extract (Ext) for 72 hrs, at selected concentration levels. The conditioned medium was analyzed using a glass slide, multiplex sandwich ELISA-based platform with fluorescent detection which allowed the identification and the quantification of 30 angiogenesis-related cytokines. RESULTS: In MCF-7 cells, low, stimulatory concentrations of test compounds determined the increase of CXCL16 and VEGF-A level. Gen induced the greatest effect, with 1.5-fold change compared to control. When MDA-MB-231 cells were exposed to inhibitory concentrations, all test compounds determined a reduction of CXCL16 and VEGF-A level with approximately 30%. CONCLUSIONS: Soluble CXCL16 and VEGF-A are two promoters of angiogenesis and metastasis in breast cancer. The stimulation of these two angiogenesis-related cytokines could represent one of the mechanisms explaining the proliferative effects of low isoflavone doses in estrogen-dependent cells. In estrogen-independent cells, soy isoflavones inhibited their secretion, demonstrating promising anti-angiogenic properties.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Ensaio de Imunoadsorção Enzimática/métodos , Isoflavonas/farmacologia , Neovascularização Patológica/prevenção & controle , Extratos Vegetais/farmacologia , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/patologia , Feminino , Humanos , Células Tumorais Cultivadas
10.
Genome Res ; 27(2): 289-299, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27965289

RESUMO

Understanding cellular life requires a comprehensive knowledge of the essential cellular functions, the components involved, and their interactions. Minimized genomes are an important tool to gain this knowledge. We have constructed strains of the model bacterium, Bacillus subtilis, whose genomes have been reduced by ∼36%. These strains are fully viable, and their growth rates in complex medium are comparable to those of wild type strains. An in-depth multi-omics analysis of the genome reduced strains revealed how the deletions affect the transcription regulatory network of the cell, translation resource allocation, and metabolism. A comparison of gene counts and resource allocation demonstrates drastic differences in the two parameters, with 50% of the genes using as little as 10% of translation capacity, whereas the 6% essential genes require 57% of the translation resources. Taken together, the results are a valuable resource on gene dispensability in B. subtilis, and they suggest the roads to further genome reduction to approach the final aim of a minimal cell in which all functions are understood.


Assuntos
Bacillus subtilis/genética , Genoma Bacteriano/genética , Transcrição Gênica , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Genes Essenciais/genética
11.
Front Microbiol ; 7: 804, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27252699

RESUMO

The Gram-positive model organism Bacillus subtilis produces the essential second messenger signaling nucleotide cyclic di-AMP. In B. subtilis and other bacteria, c-di-AMP has been implicated in diverse functions such as control of metabolism, cell division and cell wall synthesis, and potassium transport. To enhance our understanding of the multiple functions of this second messenger, we have studied the consequences of c-di-AMP accumulation at a global level by a transcriptome analysis. C-di-AMP accumulation affected the expression of about 700 genes, among them the two major operons required for biofilm formation. The expression of both operons was severely reduced both in the laboratory and a non-domesticated strain upon accumulation of c-di-AMP. In excellent agreement, the corresponding strain was unable to form complex colonies. In B. subtilis, the transcription factor SinR controls the expression of biofilm genes by binding to their promoter regions resulting in transcription repression. Inactivation of the sinR gene restored biofilm formation even at high intracellular c-di-AMP concentrations suggesting that the second messenger acts upstream of SinR in the signal transduction pathway. As c-di-AMP accumulation did not affect the intracellular levels of SinR, we conclude that the nucleotide affects the activity of SinR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...